131 research outputs found

    Stratification and enumeration of Boolean functions by canalizing depth

    Get PDF
    Boolean network models have gained popularity in computational systems biology over the last dozen years. Many of these networks use canalizing Boolean functions, which has led to increased interest in the study of these functions. The canalizing depth of a function describes how many canalizing variables can be recursively picked off, until a non-canalizing function remains. In this paper, we show how every Boolean function has a unique algebraic form involving extended monomial layers and a well-defined core polynomial. This generalizes recent work on the algebraic structure of nested canalizing functions, and it yields a stratification of all Boolean functions by their canalizing depth. As a result, we obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions

    Algebraic Geometry Arising from Discrete Models of Gene Regulatory Networks

    Get PDF
    Discrete models of gene regulatory networks have gained popularity in computational systems biology over the last dozen years. However, not all discrete network models reflect the behaviors of real biological systems. In this work, we focus on two model selection methods and algebraic geometry arising from these model selection methods. The first model selection method involves biologically relevant functions. We begin by introducing k-canalizing functions, a generalization of nested canalizing functions. We extend results on nested canalizing functions and derived a unique extended monomial form of arbitrary Boolean functions. This gives us a stratification of the set of n-variable Boolean functions by canalizing depth. We obtain closed formulas for the number of n-variable Boolean functions with depth k, which simultaneously generalizes enumeration formulas for canalizing, and nested canalizing functions. We characterize the set of k-canalizing functions as an algebraic variety in F2n. 2 . Next, e propose a method for the reverse engineering of networks of k-canalizing functions using techniques from computational algebra, based on our parametrization of k-canalizing functions. We also analyze binary decision diagrams of k-canalizing functions. The second model selection method involves computing minimal polynomial models using Gröbner bases. We built up the connection between staircases and Gröbner bases. We pro-vided a necessary and sufficient condition for the ideal I(V ) to have a unique reduced Gröbner basis, using the concept of a basic staircase. We also provide a sufficient combinatorial characterization of V ⊂ Nnp that yields a unique reduced Grobner basis

    Geometric combinatorics and computational molecular biology: branching polytopes for RNA sequences

    Full text link
    Questions in computational molecular biology generate various discrete optimization problems, such as DNA sequence alignment and RNA secondary structure prediction. However, the optimal solutions are fundamentally dependent on the parameters used in the objective functions. The goal of a parametric analysis is to elucidate such dependencies, especially as they pertain to the accuracy and robustness of the optimal solutions. Techniques from geometric combinatorics, including polytopes and their normal fans, have been used previously to give parametric analyses of simple models for DNA sequence alignment and RNA branching configurations. Here, we present a new computational framework, and proof-of-principle results, which give the first complete parametric analysis of the branching portion of the nearest neighbor thermodynamic model for secondary structure prediction for real RNA sequences.Comment: 17 pages, 8 figure
    corecore